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The Barnett approximation, on the other hand, yields 

p,p,, _ r-‘4r-‘, s fi = cxp (QFz - “/:+FT-~ - Ji&“+) 

and the solution is asymptotically stable for any fixed value of /: . 
The author expresses deep gratitude to his supervisor V.V.Struminskii for formulating 

the problem and for valuable comments. 
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Mixed problems for a three-dimensional wedge whose edge is unbounded onboth 
sides are considered. The case of several contact sections between the wedge 
and the stamps is investigated. Theorems for solvability of the integral equations 
are established in a number of cases and the properties of their solutions are stu- 
died. Approximate formulas are obtained for small wedge angles. 

The problem was examined in [1] in the case of one contact section, where 
the method elucidated in [2] was applied. The convolution integral equation 

given on a system of segments was studied in l-31. 
The equation of [1] on a system of segments is considered below according to 

the scheme elucidated in [3]. 

1. On the basis of the Ufliand solution [4] the antisymmetric mixed problem (Prob- 
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lem 1) for an elastic three-dimensional wedge with 2N lines of separation of the bound- 
ary conditions, parallel to the wedge edge is investigated. The wedge edge agrees with 
the direction of the axis of the spatial coordinate z. Each pair of lines with the numbers 

2n - 1 and 2n is separated a distance azn_t and azn(n = 1, 2, . . . . N) from the edge, 
respectively. The normal pressure p (r, +a, z) and the displacements parallel to the 

wedge faces, equal to zero, are assumed given in each region formed by such a pair of 
lines. The single unknown in the domain of contact is the normal displacement. The 

wedge faces outside the mentioned regions are rigidly clamped. 
This problem, artificial to some degree, generates a new class of systems of integral 

equations which have not been investigated earlier. The mechanically natural problem 

about the aperiodic shear of a three-dimensional wedge by a system of stamps reduces 
to these same systems. 

The case of harmonic vibrations (Problem 2) caused by this same system of stamps is 
among the second group of problems in connection with the qualitative distinction of 
the kernels of the corresponding integral equations. 

It is assumed in problems about the aperiodic shear and the harmonic oscillations that 

one of the wedge faces is rigidly clamped, and the other is loaded by a system of stamps 
moving parallel to the spatial axis (coincident with the wedge edge, as in Problem 1). 
The stamp displacements are decribed in the harmonic and aperiodic cases by the func- 

tions Re f, (r*) @“, f, (r*) emEt, %,_l < r* < Uzn (E > 0, 0) > 0) 

respectively. All the assumptions of Problem 1 are retained relative to the lines of inter- 
change in the boundary conditions. 

In the harmonic case the wedge material is considered viscoelastic with a time-con- 

stant Young’s modulus E, Poisson’s ratio v and creep 0 (t - r) dependent on the dif- 
ference between the arguments of the kernel. The wedge is assumed elastic in the aper- 

iodic case. Under the conditions mentioned, the contact stresses under the stamps are to 
be determined. 

The problems described above are reduced to the solution of the following kind of in- 
tegral equation : 

Kc!_ i af’ /;(I , ~1 (I (P) a:~ -- Ii, (r) (1.1) 

Ir-l'.l*ll-l 

m 

k(r, p) = $ ‘_ij, (xr) K_irr (Xp) K (IL) U d/l 

by using the Kantorovich-Lebedev transformation [4]. Here I, (xr), IC, (w) are modi- 
fied Bessel functions. 

The following notation is used in the case of Problem 1 : N 
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Here C, (m), L’? (m) are constants to be determined, P > (I is arbitrary, v (r) is a par- 
ticular solution of the equation 

@ 
n (u) cp = r $ ,r x i 1 

- (Gr2 j- p2) T (1, (1.) 

Q (r),Q) (r) are the Fourier tranform in the coordinate z of the normal displacements 

and stresses, respectively, x m-7 1 5 1 > 0, < is the Fourier transform parameter in the co- 
ordinate 5 and 2a is the wedge apex angle. The relation between the dimensionless 
parameters r. () and the dimensional parameters r*, P* is 

r =r*in, [, := I’* / ” 

It should be noted that the expression (1.2) has been obtained from 
s %ll 

I1 (u) 2 \ h- (r, r’) q (p) d:l = .,1@(r) (1.3) 
,‘=I &, 

which is the initial integral equation of the Problem 1. Equation (1.1) with a right side 
of the form (1.2) is obtained as a result of applying the operator ~-1 (p) to both sides 

of (1.3). The method described has been elucidated earlier in l2] and then has been 
applied in [l]. 

The following notation is used in the case of Problem 2 : 

where a is the wedge angle, L) is the material density, f (r) is the amplitude of the 
stamp displacement in the domain a,I,,_, -< P G %,,,, C’ and Y are, respectively, the _ 
shear modulus and Poisson’s ratio. The connection between the dimensionless and dimen- 
sional parameters is the same as in the static problem. 

In the aperiodic case ~OJ should be replaced by E in the last formulas and it should 

be assumed that 6 (c) = 0. 
The properties of the functions K (u) and K, ((L) are described in [l]. 

2. Applying the asymptotic estimates of the behavior of the functions I j, (%r), A ,. (XT) 
in the complex h plane [l], we obtain the following estimate in the case x > 0 : 

k (r, p) = c 111 t 11 + 0 (l)j, 1 z- ( In (T i 11) / - 0 (2.1) 

Let us introduce the spaces H,,~ (Q), &, (Q), T (Q), C (U.5) with the respective met- 

rics ca 

II q IIHo.j (s-2) = iS 

:‘* 
~Q(~)~~K(~)ushntudu 

I 
0 

II v II c (o,j) = sup, supr I q (r) (r - 32,L_1)“2 (a,,, - rf” I 

II 4 II T(R) = aup* auPr I Q (I^) I. r E 9. ld -z 1 . 2, , . . A’ 



Some contact problems for a three-dimensional wedge 347 

The following theorems are valid. 
Theorem 1. The operator K acts from Lp (Q), p > 1 continuously into 2’ (a). 
The proof is based on (2.1). 
Theorem 2. Any L, (a), p > 1 is imbedded in the space H,,.6 (9) 
The proof is based on using the integral representation of the function Ki, (w) [5] 

and the generalized Hausdorff-Young inequality p]. 
Theorem 3. In the x > C, case (1.1) has not more than one solution in the space 

Lp(Q)r l<P%2. 
Indeed, for rl (r) E Lp (a), 1 < p < 2 the relationship 

II ‘1 I&, (cl) = Rr \ -- f (4 ‘I (r.) dr 

is correct because of the estimate (2.1) and Theorems 1 and 2. Then, q(r) E 0 results 

from the condition f (r) G 0 for all r E 52. This last result means that if t‘he solution 
of Problem 1 exists, then it is unique in L, (Q), 1 < p \$ 2 if f (r) E 1’ ($1). 

No analogous uniqueness theorem has successfully been proved here in the case of 
complex x . 

3. Representing the right side of (1.1) by the Kantorovich-Lebedev integral, let us 

limit ourselves to the case f, (r) = I, (xr)Z,-' (mzn) and let us seek the solution (1.1) 
as a Series (zk (n), yk (n) are COnStantS to be determined) 

1, (XP) m 
+&,(d=xu I,(x-@ + 2 

i 
“ktn)l 

I_iZk @PI 

+ Yk tn) 
K-izk (XP) 

k=l 
-irk W,n) K_iZk W*n_J 1 (3.1) 

azn+ 4 P < azn7 n = 1, 2, . . ., N 

We insert (3.1) into the left side of (1.1) and representing the kernel k (r, p) in the 

form in [l] , we integrate in the series. We hence arrive at an infinite system of linear 

algebraic equations to determine the constants, one of which is presented below (another 
can easily be obtained and has an analogous form) 

N 

All(m)S(m)+.41z(m)Y(m) + 2 [GlJ (n) X(n)+Gn(n)Y(n)] =Bl(m) (3.2) 

~n=rrt+l 

iw Ih’-izl (&,jv K_i& (&,)I 
A412 (m) = {% (I* ‘)} = (c,“- zl”) K_+ (h,,) h’_+ (a,,) 

iw 1 ‘-irl ta,rn)7 Cic, (h,,,,)] 

-h (m) = {% (I* ‘)I = (5,” - Zr2) I$ (a,,,) K_iLr (h,,) 

The notation from [l] is used here. Because ofthe awkwardness of the expressions ob- 
tained, the matrix elements G,, (n), G,, (n) are not presented. 

The equivalence between the infinite system (3.2) and the integral equation (1.1) and 
the converse is established in appropriate classes of functions and sequences because of 
the property of minimality of the system of functions {f 7,h. (--j, K,k (-)J [l]. 

In those cases when uniqueness holds for the integral equation, uniqueness also follows 
at once for the infinite system. If it turns out that the infinite system is equivalent to 

an equation with a completely continuous operator, then solvability of the system follows 
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immediately. 
It is easy to verify that the elements of the matrix Akk (no) (W = 1, 2, . . . . ;Vv) tend 

to elements of the matrix A = ((5, - zl)-‘} as ( cr ( - m. 1 zl 1 - 00 , while the ele- 

ments of the matrices Akj (n), (:kj (n) decrease exponentially. 

4, Using the inverse matrix A-” f7], the system (3.2) can be written in normal form, 
where the first matrix equation is 

X(m) = ‘&i&(m) + :I-‘[:1 - :I,, (m)j S(n2) - .1-‘.ll:!(rn)Y (rta)- (4.1) 

3 .-I-’ [Gil (n) .Y (n) L Cl.2 (n) Y (n)l 

n-m+1 

Using the estimate (1.3), it can be established that the matrix elements of the right 

side of the system (4.1) generate completely continuous operators in the space of the 
sequences s (a), 0 < (J -< ‘i, with the norm 

Because of the above, the single-valued solvability of the system for x > 0 in s ((T) 
results from the single-valued solvability of (1.1) because of the positive definiteness 
of the operator of the left side in Hr. j (‘21 and the minimality of the system of functions 

$, (-1, K,,k (2). 
The following theorem is valid. 
Theorem 4. The solution of (1.1) taken in the form (3.1) belongs to the space 

C (0.5). 

The proof of the theorem follows from the validity of the imbedding C’ (o.,>) r L1, (i!) 

f < P < 2) and that the solution taken in the form (3.1) belongs to the L, (!!I men- 
tioned,if X E s (a), Y E s (c!. 

It follows from the theorem that the solution of (1.1) can be sought in the form (3.1) 
and this solution will be unique in the case ?c > 0 because of Theorem 3. For complex 
values of x the single-valued solvability of (1.1) has not been proved successfully by 

the methods mentioned. However, in the general case the system (4.1) turns out to be 
quasi-regular and known methods can be used to investigate it [S]. 

In the case of sufficiently small wedge angles, the operators of the right side of (4.1) 
become compressive and the system can be solved by successive approximations. 

6. Assuming the wedge angle to be small, let us investigate the system (4.1) in a 
zero approximation by selecting S’“’ (m, = ;l-‘U, (rn). I’{“’ (nzi A -lB2 (m) as the last 

matrix. Evaluating the elements of the matrix .X-i”’ (in). 1-(“’ (n), we find 
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The expressions for yl(O) (m) are analogous i n form. Let us note that the expressions for 

Xrn @d. Y, Gz) can be written as 

x, (zl) = z (~1) + AZ (m), Y, h) = Y h) + *, (m) 

Here r (zr), y (zr) is a solution of the system (4.1) in the case of just one stamp acting 
in the domain a 2m--3 < r < clzm Cl], and Ar (m), 6~ (m) are corrections to the solution 

of the problem with one contact domain which characterizes the influence of the rem- 
aining .W - 1 stamps of the contact domain mentioned. 

Inserting (5,l) into (3.1) and summing the series obtained in the contour integral, we 
obtain the following asymptotic formulas to solve (1.1) : 

I, @PI $- Qm (p) = so I, (&,) 

1 ’ a[ I<, (XP) 
-z “m (-r) Ii, (a,,) + (5.2) 

Kit (‘P) 
!‘,I (-- !) ICi, (h,,_i) 

h’,’ (Q 
K,ot 

I)L = I, 2,. . . ) !Y, r2m-l 4 ? < zqm 

Here the contour I is in the lower half-plane enveloping the zeros and poles of the 

function K+ (t) from above and the points t = f iq from below. 
The expression (5.2) is easily calculated by using operational calculus formulas when 

asymptotic estimates of the behavior of the Bessel functions I, (xP), A, (xp) are used 

for large values of ]A] [9]. Then the asymptotic expression for the contact stresses in 

the case of Problem 2 (for I’ + c~8~--1 , say) will have the following form 

Q, (r) - ui (rl> T)l) [i - (P ! KTnl-lr x )I “I-’ * II + 0 (In P ! a,,,_,)1 

(P - c$m_J 

It is seen that the function (I (1)) belongs to the space C (0.5) for p E 52 . 

In the case of Problem 1, the solution of (1.1) depends on two arbitrary constants 
c’, (n0. L’, (m) found from the conditions of boundedness of the displacements at the 
points 

ci == ‘x.z,n__l , [‘=‘lzm, I,? 1, 2, . . ., .\ 

The author is grateful to V. A. Babeshko for monitoring the research and for his com- 
ments. 
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An approximate analytic representation of the solution of a nonlinear equation describ- 

ing the subcritical axisymmetric shell bending was used in Cl] in an investigation of the 
stability of equilibrium of a semi-infinite circular cylindrical shell loaded by a uniform 
radial stress resultant along a hinge supported edge. In substance, this representation 
corresponds to the two first terms of the expansion of the desired nonlinear solution ina 
power series of the parameter 

p = uq “Q / (1:‘hp”) (112 : h / [/C 1/:3 (1 - v’) 1) 

Here Q is the intensity of the external radial stress resultant, II and It are the shell 

thickness and radius, and E and v are the Young’s modulus and Poisson’s ratio of the 
shell material. The construction of higher approximations was nor carried out because 
of their extreme awkwardness. 

However, the desire to solve more exactly the stability problem formulated in [l] 

forced the authors to return to the question of refining the solution of the nonlinear bound- 
ary value problem of subcritical shell bending. To solve this problem, the procedure of 

differentiating with respect to the parameter was used in combination with the method 

of finite differences. 
Differentiating (1.1) from [1] with respect to the parameter 11 and later going over 

to finite differences yields the following successive approximations process to the desired 
nonlinear solution (the meaning of the notation is disclosed in Cl]): if the functions 
rli (5) and iii (2) are a solution of the nonlinear problem for p ~~ pi, then the functions 

are the approximate solution for P = P,+, :-== pi + Ap , where 11~’ (I) and 6i’ (.r) are 

determined as a result of solving the linear boundary value problem 


